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SUMMARY

A systematic study of threat effectiveness for antiaircraft artillery (AAA)
systems requires the development of a mathematical model for the gunner's
tracking response. The gunner (or tracker) model is then incorporated into
computer simulation programs for predicting aircraft attrition with respect
to specific antiaircraft weapon systems, Two of the fundamental design
requirements of a gunner model are simplicity in model structure and
accuracy in the tracking error predictions. A simple gunner model structure
will shorten computer simulation execution time. Obviously, accurate
predictions of tracking error implies model fidelity with respect to
describing the gunner's tracking performance. The Luenberger full-order
observer theory has been applied to design a human operator model (observer
model) for AAA tracker response which has been documented in a previous
report. This technical report will describe the development of an anti-
aircraft gunner model based on the Luenberger reduced-order observer theory.
It satisfies both the design requirements mentioned above, It is composed
of three main parts - a reduced-order observer, a feedback controller, and

a remnant element.

A parameter identification program based on the least squares curve-fitting
method and the Gauss~Newton gradient algorithm is developed to systematically
determine the model parameters. This program iteratively adjusts the
parameter values to minimize the error between the model prediction of
tracking error and actual human tracking data obtained from manned AAA
simulation experiments conducted at the Aerospace Medical Research Laboratory,
Wright-Patterson Air Force Base, Ohio. Computer simulation results-of the
AAA tracking task using this model are in excellent agreement with the
empirical data for several aircraft flyby and maneuvering trajectories., A
comparison between this model and the optimal control model by Kleinman,
Baron, and Levison is also given. This model is shown to be as accurate as
the optimal control model in predicting tracking errors. 1In addition, the
computer execution time of the AAA closed loop system simulation utilizing
this model is less than 15 percent of that using the optimal corntrol model.
Therefore, this gunner model canr be used accurately and efficiently in the

study of the AAA effectiveness and aircraft survivability.
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Section 1
INTRODUCTION

A computer simulation study of threat effectiveness for antiaircraft
artillery (AAA) systems requires the development of a mathmetical model for
the gunner (or tracker or human operator) response. The gunner model
represents the human operator's control characteristics in a compensatory
tracking task. It is then incorporated into computer engagement. simulation
programs [1] for predicting aircraft attrition with respect to specific
antiaircraft weapon systems. Two of the fundamental design requirements of
a gunner model are simplicity in model structure and accuracy in the
tracking error predictions. A simple gunner model structure will shorten
computer simulation execution time. Obviously, accurate predictions of
tracking error implies model fidelity with respect to describing the
gunner's tracking performance. Then, the manned threat quantification in
the threat analysis will be reliable.

An antiaircraft gunner model based on the Luenberger full-order observer
theory [2] was developed and documented in a previous report [3]. 1In this
report, the Luenberger reduced-order observer theory [4], [5] is applied to
develop a tracker model for AAA compensatory tracking task. It satisfies
both the design requirements mentioned above. The structure of the model
is simple and its predictioms of tracking errors are accurate. It is
composed of three main parts - a reduced-order observer, a feedback con-
troller, and a remnant element. An observer is itself a dynamic system
whose output can be used as an estimate of the state of a given system. A
reduced-order observer has dynamic order less than the observed system and
provides an estimate of those state components which are not available for
direct measurement. The structure of a reduced-order observer is simple
and its design is easy. The idea of using a reduced-order observer in the
tracker model design is to obtain an appropriate estimate of the state
components (which are not directly measurable) of the gunsight system and
the target motion. When the gunner (a human operator) -observes the tracking
error from the visual display, he not only obtains the tracking error

information, but also has a certain understanding or knowledge about other
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variables (state components) of the overall system. It is one of the main
differences between human tracking and machine tracking. A human operator
(gunner) can always realize more information about the system than what is
on the display. This fact is represented by a reduced-order observer in
the gunner model. The estimated state components from the reduced-order

observer and the observed state components from the display are then used

to implement a linear feedback controller wnich represents the gunner's
control function in the compensatory tracking task., The effects of all the
randomness sources due to human psychophysical limitations and of modelling
errors are lumped into one random remnant element in this model design.
Another important feature of this model is that its parameters can be
determined systematically instead of by trial-and-error. A parameter /
identification program based on the least squares curve-fitting method [6] 1
and the Gauss-Newton gradient algorithm [7] is developed for this purpose.
This prof.cam iteratively adjusts the parameter values to minimize the least
squares error between the model prediction of tracking error and actual

human tracking data obtained from manned AAA simulation experiments conducted
at the Aerospace Medical Research Laboratory, WPAFB, Ohio. Thus it provides
a convenient procedure for model validation. In addition, a computer
simulation program NuOMS (Reduced-Order Observer Model Simulation) is
developed with the designed model describing the gunner's response for a
given AAA tracking task, The program provides time functions of the

ensemble mean and standard deviation for the model's tracking error pre-
dictions (azimuth and elevation). Computer simulation results are in
excellent agreement with the empirical data. Furthermore, this model is a
predictive model in the sense that it can be used to predict tracking

errors of an AAA system for various flyby and maneuvering trajectories with

similar frequency bandwidths.

A comparison between this model and the optimal control model [8], [9], and
[10] (by Kleinman, Baron, Levison) is also given. It can be shown that the
model based on observer theory is as accurate as the optimal control model

in predicting tracking errors. In addition, the computer execution time of

the AAA closed loop system simulation utilizing this model is less than
15 percent of that using the optimal control model. This is a primary
advantage of a model with simple structure.

7
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The design of the antiaircraft gunner model based on the reduced-order

observer theory is described in detail in Section IXI. Section III gives

the model validation method and computer simulation results.

is given in Section IV.

The conclusion
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Section II
REDUCED-ORDER OBSERVER. MODEL

In [3], the azimuth or elevation gunsight dynamics, rate~aided control
dynamics and the target motion of an antiaircraft artillery (AAA) gun

system have been represented by the foilowing state space equation.

I%.

= Ax + Bu + Fo, (1)

where x is the state vector with two components,

x1(t) en(t)
E(t) = ! = T

x2(t) 8.x(t)

eT(t) is the tracking error, i.e., the difference between the target
position angle BT and the gunsight line angle eg. éT is the target angle
rate. The scalars u and eT in Eq (1) denote the tracker's control output

and target angle acceleration respectively., The matrices A, B, and F are

E 0 1
A=l 11 C22] ,
az1 a22 0 O
b -1 £ 0
B = 1 = ’ F = 1 =
b2 0 f2 1
b

The tracking error ep on the visual display is observed by tlie gunner and

is expressed in the measurement equation:

y = Cx (2)




where y is the observed tracking error and C is a row vector [1 0]. Next,

Equations (1) and (2) will be used to develop the reduced-order ohserver
model.

The structure of the reduced-order observer model is shown in Figure 1. It
consists of three main elements: a reduced-order observer, a controller,

and a remnant element. The reduced-order observer processes the tracker's
observation from the visual display to provide an estimate of those state
components of the AAA system which are not directly measurable. It will be
shown that the system equation (1) is a second order system, but the reduced-
order observer is only a first order system, since some components of the
state vector as given by the system outputs are already available by direct
measurement. The estimation of thecse measurable state components is not
necessary and will cause a certain degree of redundancy. The use of a
reduced-order observer eliminates this redundancy and provides an approximate
estimation of the state components wanich can't be measured directly. The
controller represents the gunner's tracking function by a state variable
linear feedback control law. The observer «.d the controller consists of

the deterministic part cf the gunner model. The effects of the various
randomness sources in the AAA man-machine closed loop system and of the
modelling errors are lumped into one element called remnant, which is the
stochastic part of the gunner model., These randomness sources include the
modelling error, the observation error, the neuromotor noise, etc. Mathema-

tical equations of this model are given below.

A. Reduced-Orvuer Observer Design

System equations (1) and (2) are used in the design of the first element
(reduced-order observer) of the gunner model., However, the gunner does
not have precise information about the target dynamics, so the term repre-
senting target acceleration, BT’ in Equation (1) will not be included in
the design of the observer equation. The effect on the tracking error due
to eliminating the 6T term will be included in the remnant element. Now
from Equation (2), y = Cx = xj, the tracking error is available from direct
observation. Thus, it s only necessary to estimate the second component

Xy of the state vector x in order to implement a state variable feedback

10
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control law. In the following, the Luenberger reduced-order observer
theory [4] and [5] is used to design the gunner model. First, with the 6T

term eliminated, Equation (1) can be rewritten as

[}

X} = aj1x) + ajoxy + bju (3)

X2

ag1x) + azexp + bou (4)

Since the first state component X; is measurable, i.e., y = x;, Equation (3)

can also be expressed by

y = a)1y + ajpxy; + byu

or equivalently,
i' - aj}y = ajoxg + bu (5)

Let us introduce a new variable y* = § - a11y, then Equations (4) and (5)
can be expressed by

Xg = apoXsy + a1y + bou (6)

and

y® = ajoxp + bju @)

Now Equation (6) is the reduced-order system dynamic equation with measure-
ment data obtained by Equation (7). Note that Equations (6) and (7) are a

first order system with one measurement equation. An observer which gives

an estimate %7 of x7 can be easily designed as shown by tlie following

equation.

Pide

2 = a22%p + a1y + bou, + k (y°- ajXy - byu)
= (agp - kajp) X, + ky + (ap; - kajq) y + (by - kbp) u, (8)

12
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where aij and bk are the elements of matrices A and B in Equation (1), the
scalar k is the observer gain, y and § are the observed tracking error and

error rate respectively, and u, is the linear feedback control law (the
controller) with the form:

o foel (2]

where the feedback control gains y; and Yy, are two constants to be determined
later. Note that the state feedback is composed of y (the observed variable
which is x;) and &, (the estimated state of x3). "It can be shown that the
system (1) and (2) is completely observable., (The definition of observability
and the conditions of a system to be observable can be found in [11l]. Then,
by the observer theory, there always exists an observer gain k to make the
eigenvalue of the observer (Equation (8)) negative. Thus, the output of the
observer will be a good estimation to the state of the observed system.

This shows the existence of proper observer gain k in Equation (8). Actually,
the value of observer gain k is determined by a curve-fitting identification
program. The required differentiation of y in Equation (8) can be avoided

by introducing the following variable:

z(t) = & - ky(t) (9)
Hence the observer dynamics can be represented by

z = (aps - kayp) z + (azs - kajyp) ky + (ag; - kajy) y +

(bz - kbl) uc (10)

Next, the actual output of this model 1s expressed as the sum of the output

uc of the controller and the remnant element v.

u=u +v
c
y
= - [Yl Yz] Xt v (11)

13
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where the remnant term v(t) is modeled as a white noise and its statistical

properties are selected to be

E [v(t)] =0 for all t

E [v(t) v(1)] = q(t) &(t - 1) for all t and t (12)
where E is the expectation operator and the covariance function q(t) is a

scalar function of time and will be described later. & is the Dirac delta

function.

The gunner model equations of the observer, the controller, and the remnant
have been derived. These equations are combined with system equations (1)

and (2) to obtain the mathematical model of the closed loop AAA system.

Since x; = y, Equations (1) and (10) can be rewritten as follows

y

»

T

ajyy + ajgoxp + bju + £,
(13)

iz = as)y + ajsoxs + bou + fzeT

N e
i

(az2 - kayp) z + (agp - kajyp) ky + (az) - kayy) y +

(bs ~ kbyp) u,

u=u +v
c

o= [nd[2]

By introducing new variables:

=
u

X3 = X9 - ky

14
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e b

e =3X3 -2 (14)

Equation (13) can be rewritten as

i’ = [an + ajgk = by(y; + k‘Yz)] y + (aj2 - byya)xs +

C s e gy

|
l
|
byyose + fls; + byv
%3 = [(a22 - kayy) k + (ap) - kayy) - (by = kby) (y; + kyZ_)] y +
L [}22 - kajp = (by - kby) 72] x3 + (by = kb;) yvoe +
} (by - Kby) v + (f2 - kf1) 6, !
e = (azy - kajp) e + (f2 - kfy) 8, + (by - kb)) v
Or equivalently,

X =A%+ F18,, + D1v (15)

where X 1s the state vector of the overall system with components:

' Yy y
! X= |x3|= |x2 - ky

\ e X3 - 2

y A, F), and D; are matrices defined as follows:

. -y
o B S

N
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— ~
ayy + appk - by (y1 + k v2) ajp~byvya by
A; = | (apy - kajp) 'k + apy - kay; - agy - kayy - (by - kby)vz
(ba = kbp)(y1 + ky3) (by - kby)yy
0 0 as0 - kays
ey o
f) by

F1 = f2 - kfl N D]_ = b2 - kbl
fo - ki, by = kby

In order to determine the parameters k, Y, Y2, and the covariance function
q(t) in Equation (12), we use the following equations. Letting the

expectation value of X be X then we have,
X = Ali + FleT (16)

and the covariance matrix of X(t) is P(t) = E [(X(t) - -f(t)) (X(t) - '}-('(t))T];
then it can be shown in [ 11 ] that the covariance matrix is governed by

P = AP + PA " + Dy q(t) Dy’ (17)

Equations (16) and (17) will be used in Section III to determine the values

of parameters in the gunner model.
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sistency between the PSD's of target angle acceleration 6

B. Frequency Domain Analysis

A detailed study of the frequency domain responses of some key time domain
variables of the AAA tracking system has been done. This will provide us
information to design the covariance function q(t) of the remnant element
(see Equation (12)). The power spectral density functions (PSD) of the

target angle eT, angle rate éT and angle acceleration 6,, were generated for

the four flyby and maneuvering trajectories [3]. TheseTPSD functions were
generated for both azimuth and elevation components of target motion
variables. It was‘found that the significant parts of all these PSD
functions are less than 0.5 Hz. In addition, similar PSD functions were
generated for the sample ensemble mean E& of tracking errors which were
obtained by averaging empirical data of sixteen rums. The empirical data
was generated from manned AAA simulation experiments conducted at the
Aerospace Medical Research Laboratory, WPAFB. There is a significant con-
T and the PSD's of

of the tracking error. These

the corresponding sanmple ensemble mean em
results are shown in Figures 2 through 9. There are two curves on each of
these figures, The solid curve denotes the PSD function of the empirical
mean of tracking error. The dashed curve describes the corresponding PSD
function of the target angle acceleration. Figures 2 through % show the
comparison of PSD functions of the azimuth case for four target trajectories,
respectively. Figures 6 through 9 show the similar results for the elevation
case. The low frequency parts of the PSD functions of target accelerations
match well the low frequency parts of the PSD fungtions of empirical means -
of correspon&ing tracking ervors. The high frequency parts of the PSD
functions of empirical mean tracking errors in these figures are the results
due to small sample size of experimental runs. ¥igure 8 shows that these

two PSD functions do not match., After further investigation, it was found
that the data tape containing the information of target elevation acceler-
ation was not properly generated. In this frequency domain analysis, it is
concluded that the tracking error in AAA tracking task depends on the

target acceleration. In other words, when the target aircraft makes a
maneuvering flight (i.e., the corresponding target acceleration increases),
the tracking difficulty increases and hence the tracking error increases.
This observation will be used in the next section to design the covariance

function of remnant element.
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Section III
MODEL VALIDATION

A. Time Domain Curve-Fitting Identificaqign Method

The design of a gunner model included tﬁdvméin procedures; the deeign of
the sttucture of the model and the determination of the values of the model
parameters. The structure of the gunner model based on observer theory has
been described in Section II. In this section, the parameters of the model
will be determined through an identification program. Figure 10 shows the
parameter determination procedure. The manned AAA simulator built at the
Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio, provides
the empirical tracking‘error data, eT(t), along with the simulated target
trajectory eT as thelinput. ET(t) represents the sample ensemble mean of
the tracking error of sixteen simulation runs. Now in Equation (16), the
first component of X is the expectation value of the tracking error, i.e.,

the model prediction e, of the ensemble mean of the tracking error in the

T
AAA closed loop system. AET denotes the difference between the empirical
- !
data ep and the model prediction e The criterion function evaluates

the "goodness of fit" between the model prediction and the empirical data.
In this study, the criterion function is selected to be

t
-]t <! 2

1
where te is the tracking duration (equal to 45 seconds), e, is the model

prediction of the tracking error which is a function of tize and the unknown
parameters. The explicit form of the function E; in terms of time t and
model parameters Yl, Y2 and k has been derived and is included in Appendix A.
The criterion function J will be minimized with respect to these unknown
parameters. The Gauss Newton gradient algorithm was used as the parameter
adjustment algorithm to iteratively determine the values of model parameters.

The values of parameters obtained through this identification program are:
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Azimuth Tracking

Elevation Tracking

Observer gain k 2,94 3.02
Controller gains Yl -2.87 -3.01
72 -1.00 -1,00

Once the observer gain and the controller gains are determined, the system
matrix A; is known. Next the model prediction of the standard deviation of
the tracking error is considered. It can be shown that the square root of
the first diagonal element p;; of the covariance matrix P(t) in Equation (17)
is the standard deviation of the tracking error. The solution of Equation
(17) is

P(t) = 4(t, ) B(t) ¢°(t, £ ) +
St s, omaon ke, var (18)
(o]

where $(t, to) is the state transition matrix defined as

¢(t, to) = eAl(t-to)

and q(t) is the covariance matrix of the random remnant. It has been found
from the frequency domain analysis results that the tracking error depends
on the target trajectory dynamics, especially the target acceleration 6T'
Therefore, it is assumed that the covariance function q(t) of the remnant
is a function of the target dynamics as follows:

a(t) = o + b 2(t) + aze 2(t) (19)

where al, az, and as are three nonnegative constants to be determined later
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and éT and eT are estimated target angle rate and acceleration, respectively.

The reason that only estimated values éT and GT were used in Equation (19)

is that the gunner does not have precise information about éT and GT (i.e.,
target uncertainty). These estimated quantities can be obtained as follows:

Equation (9) can be rewritten by

A

éT = z(t) + ky(t)

where z(t) is the output of the reduced-order observer, k is the observer
gain, and y(t) is the observed tracking error. Since all these quantities

are known, éT can be computed. Next, by the first-order approximation, éT
can be found from,

) = 6 p (8- 07t p)
(tk it

where te = kAt, and At = 0,04 sec is the sampling period. Then by minimizing
the following cost function J', the parameters a , o ,-and ¢ can be
determined.

t
- £ - 2
J fo [Sl(t) Sz(t’ al, az, as)] dt

where Sl is the sample ensemble standard deviation of empirical tracking
error of sixteen runs and S2 is the model prediction of the ensemble standard
deviation (an explicit function of time and the parameters al, o , and as).
Note that the curve-fitting of the standard deviation of tracking error is
also done in the time domain instead of in the frequency domain as in [3].
The derivation of the function 82 from Equation (18) is included in

Appendix B. The results of the parameter determination program in minimizing
J' are,
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B. Computer Simulation Results

The numerical values of the parameters of this gunner model were determined
in the previous subsection with respect to the gunsight dynamic system
(Equation (1)) and a deterministic target trajectory., The gunner model is
now ready to be used for computer simulation., A computer program called
ROOMS simulates the AAA system with this model representing the gumner
response. The input to this program is the target motion trajectory., The
outputs are the model predictions of the ensemble mean and standard deviation
of the tracking error. These results are plotted in Figures 11 through 26.
There are two curves in each of these Figures. The solid curve denotes the
empirical tracking data. The corresponding model prediction is denoted by

the dotted curve,

Figures 11 through 14 give comparisons between the empirical data and the
model prediction of the ensemble mean of azimuth tracking errors for four
target trajectories., Obviously, the model predictions match the empirical
data very well for both flyby and maneuvering trajectories. It should be
emphasized that these results are o@tained by using the designed gunner
model with the same set of model parameters (determined in the previous
subsection) applied to various trajectories. In other words, it verifies
that with the same set of parameters, the gunner model based on the reduced-
order observer theory can give accurate predictions of tracking errors in
AAA weapon systems for various target trajectories with similar frequency
bandwidths. Therefore, it is a predictive model. Next, Figures 15 through

18 give comparisons between the empirical data and the model prediction of
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the ensemble standard deviation of azimuth tracking errors for four
trajectories. Again, excellent matching between the two curves are shown
in each of these four figures. Similar results of the elevation case are
shown in Figures 19 through 26 for the four trajectories. All these
results indicate that the gunner model is able to represent the character-

istics of the gunner response in the AAA compensatory tracking task.

C. Comparison

A comparison of the model prediction accuracy between this gunner model and
the optimal control model has been done for several target trajectories.
All the results show that both models give accurate predictions of tracking
errors. Some typical results are shown in Figures 27 through 30. It is
obvious that the gunner model developed by the authors can predict the
tracking errors as accurately as those obtained by the optimal control
model. However, the computer execution time for simulating the AAA gun
system using the gunner model is less than 157 of that used by the optimal
control model. It is a primary advantage of a model with simple structure.
The following table shows some highlights of the gunner model over the

optimal control model.

Gunner Model Optimal Control
(Observer Theory) Model

Model Structure Low High

Complexity

Computer Simulation 5.48 37.02

Time (Seconds)

Model Predictions Good Good

of Tracking Errors

Model Valiidation Parameter Trial-and-Error
Identification Tuning
Program
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Section IV
CONCLUSION

The Luenberger reduced-order observer theory has been applied to design an
antiaircraft gunner model which is composed of a reduced-order observer, a
state variable feedback controller and a remnant element. The highlights
of this model are simple structure and accurate model predictions. The key
design requirement is to make the model structure simple so that it will
shorten computer simulation time., It has also been shown in Figures 11
through 30 that this model can predict the tracking errors accurately. In
addition, parameter identification program based on the least squares
curve~fitting method and the Gauss Newton algorithm has been developed. It
provides a systematic procedure to determine the numerical values of the
model parameters. This gunner model has been used to study the AAA
effectiveness of several foreign air defense weapon systems at the Aerospace
Medical Research Laboratory, Wright-Patterson AFB, All the results show
that it is an accurate and efficient antiaircraft gunner model. Therefore,

this model can be used to study AAA effectiveness and aircraft survivability.
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APPENDIX A

Derivation of Model Prediction of Mean Tracking Error

The model prediction Eé of the ensemble mean of the tracking error as an
explicit function of time t and parameters Yl’ Yz’ and k is derived in this
Appendix, First rewrite Eq. (16)

[

X =

It can be shown that the solution X of Eq. (16) is given by

X(t)

where ¢ is a

N F¢11 ¢12 ¢13-

= Mt o

$(t) e ¢21 ¢22 ¢23
_¢31 ¢32 ¢33_}

The first component il(t) represents the ensemble mean of the tracking

error. From Eqs. (1) and (15),

b -
f1 0
F = f - kf = 1
1 2 1
f - k£ 1
2 1

AX + Fo

1 1T

t
J{lm o(t - T)FléT(T)dT

3 x 3 matrix and equals:
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E;(t) can be expressed by

t

RO -

Let G(s) be a 3 X 3 matrix which represents the Laplace transform of the

[¢12(t -1T) + ¢13(t - Tﬂ GT(T)dT

Ml
H
w1
~
(x3
~

]

transition matrix ¢(t); then it can be shown that

-1 Adj(sI - A))
) = (I-4)" = S@GT-&)

where s is the variable of the complex plane and I is a 3 x 3 identity
det and Adj denote the determinant and adjoint of a matrix

matrix.
Let Gij(s) be the ijth element of the matrix G(s); then

respectively.

1 +'72

G, (s) =
12 g2 - Y,8

and

[p]
”~n
n
o
i

13 82 + (k - y,)s - ky,

For simplicity, select Y, = -1, then Glz(s) = 0 and

1
2 - -
gc + (k yl)s kxl

G (8) =
13
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Taking the inverse Laplace transform of G13(s), we have

eYlt - oKt
¢ (t) =
13 Yy +k
1
So
' t Yyt - 1) -k(t - 1)
- = e - e ..
eT(t) -/:w Y, T BT(T)dT

This is the explicit function of Eé in terms of the unknown parameters.

The derivicives of Eé(t) with respect to parameters k and Y, are expressed
in the following

S B RACEIORIN I CE o)

Bp(t)  pe Gy R - DK
il |

~ (v, + ©)?

-eT(T)dT

y, + k) (t - et (t =T _ (Nt - 1) _ k(t - 1))

(e fc (
i oo (Y, + k)2

'GT(T)dT

These quantities are used in the mean curve-fitting parameter identification

program,
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APPENDIX B
Derivation of Model Prediction of Stamndard Deviation of Tracking Error
The function 5, which is the square of the standard deviation of the

tracking error is derived in terms of al, az, and as. Equation (18) is

rewritten here:

P(E) = (et )P(e )4 (E,e ) +

t
/ ¢(t,T)D1q(T)D1T¢T(t,T)dT

t
(o]

where
- i &9
q(t) al + azeT (1) + aseT (1),
[ b, M -1
D, = b, = kb, =| k
by - kb, k
3 - [
and let
[0« ]
Qr) = quman = |-k k2 K| . q)
-k k% k2
o .
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- T e T = v

v e o P

Since the first element p11 in the diagonal of matrix P(t) is the square of
the standard deviation of the tracking error and denoted by S,, then,

3 ) t 3 3
Doog2 (e (e) + [T 3 %

s = »p (t) =
11 i=1 0 j=1 =]

2
¢1k(t-r)qkj () ¢1j(t-r)dr

where qkj denotes the kjth element of the matrix Q. As shown in Appendix A,
the parameter Y2 is selected to equal'-l. Therefore ¢12(t) = 0. Then

= 2 2
5,(6) = ¢ 2(e,e)p (£) + ¢ Rt )p () +
t
(o)

where ¢13(t) has been computed in Appendix A and ¢11(t) is obtained in the
following. From Appendix A, it can be shown that

1
G =
11(5) s -y
1
So we have
' Y, t
N = i
t = e =
¢11( )
Then
2y: (t-t.) Ti(t-te)  ~k(t-ty) ) 2
s () = My (r ) + (2 . P (t) +
2 11 v, +k 33
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-a+a821‘+a321)d1
(1 zT() 3T()

This is the explicit function of 82 in terms of al, az, and ozs.

L ng e

Let
- 2 ‘
2Y1(t—to) eYl(t t,) L o k(e=t) ’,
E@) - e P () + R P, (t) ;
and g
2
A R
f2(t) = le -k a—
1
then
ft g 5 20
S(t) = £ (t) + f (t~t){a + o 6, 4(t) + a 0 (1) })dr
RCIEIEXCRY NEX s, + 0820 Jr@)

Now the derivations of Sz(t) with respect to al, az, and cz3 are

98, (t) t
2 = /t f2(f—T)dT

) 30
o

25, (t) t .
32 =/t fz(t-T)eTz(T)d’l‘

§ 2 o

38, (t) ft 5,
aqa = t, fz(t-T)eT (t)dr
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These quantities are used in the standard deviation curve-fitting parameter

identification pregram.
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APPENDIX C

Flow Chart and Program Listing of Time Domain Curve-Fitting Program

Flow Chart of Parameter Identification for Parameters Associated with
Mean Tracking Error Equation.

READ:

- EMPIRICAL DATA - MEAN
TRACKING ERROR: &,(t)

~ TRAJECTORY INFORMATION:

INITIAL COMPUTATIONS

-OBSERVER MODEL PREDICTION OF MEAN
TRACKING ERROR: &+(t)

- PARTIAL DERIVATIVES OF €1(t) WRT

9

(1) PARAMETER VECTOR ao
~INITIAL PARAMETER ~VALUE OF COST FUNCTION :
GUESS . - 1 2
Jo= 2 1 & ()-8 (1)
go = [ Ki8i] ° lu[ T 7]
-—A:
CALCULATE
D
i
UPDATE PARAIAETER VECTOR:
gy T oitPRy
v
UPDATE: &7 (t)
8& 1(1)/9 Qi1
Jit
[~ *““< iy <y >'“""
< YES CHECK :
- /2 " e
PEPIE T petim
\ ——
Ay 1D (k)‘ ce NO
- PR
v
WRITE! p= YES / CHECK: '\ NO__
i+ | ANC iy GiE o | N\ Sk ER
A Qi = Qb
Ea— L= i+l
stop )
st s 61

J-."-n» ¥

- - f"#r‘

no (" stop
"“< ERROR D

STOP
RoR 2

—marares v

L e e, ot
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g, A - AN

Comments: Execution of Program Fit.

e e B

1. Compile Program
2. Input: Tape 1l contains !

a. Azimuth and elevation trajectory information

b. Empirical data - mean tracking error
3. Load Library Routines:
a. VCONVO - convolution integral computation from International
Mathematical & Statistical Library (IMSL).
b. GMINV - matrix inverse routine from D, L. Kleinman Library
[12].

4, Execute

e e g

5. Qutput: Parameter values [k, Yl]'

- RE————
— e b o 2 W

e B . -

e

N L T e e S
AN 1, P70, 0 i g i P .

62

R




PROGRAM FIT(INPYT,O0UTPUT,TAREL)

COMMONZVAR/UIML LIM215CE9IPyHyNyDELyNIsN2
COMMONZMAT/F2(1324) 4 A(2) 4 AA(2) 4B(192(,2),0(2),F3(L026)
UATA NyH, 12 N1 41271026y ed0by2y100y10247

c CURVE FIT 20u71vs TO DETERMINE IF 2 PARAMETERS KGAIN & GAMMA1
po 10 1=1,
1y READ (1, 3)F3(I+N),z,21,zz
00 24 I=1,N ”
20 READ (1 44) Z9ZL9F2(1) 922923424
3 FORMAT (G12.%) i N
4 FCRMAT (5G12.4)
1 PRIRT¥,5CHYYPE I TO0 GO OR VTYPE 0 TU STOP B
READ*,IFG
IFTIFG. Q. JI5TOP
CALL INIT
GO 10 1
END

SU3ROUTINE INIT
INITIALIZATION R0UTINE
READIW OATA TO BE FITTED i
MAKE INITIAL GUESS
COMMOIT/VAR/LIWT, LYMZ EE, IPyHyNsDELyNI N2
COMMON/MAT/F2(1324) yA(2) 4 AA(2)48(1024L42)4D(2)4F3(4095)
PRINT¥,3T0H TYPE IN LINT,LTH2,EE
READ*,LIML,LIM2,EE
PRINT*,3H "=,N,2HH=,H,5RLI4L=,LIN1,SALIN2=, LIM2,SHEE=EE) SHIP=, ]
PRINT#,30H TYPE IN INITIAL GUESS - KGAIN, GAMMAL
READ¥, AA
PRINT*,19H 4ST SUESS,AA
DELET
CALL COSF (AAyRJ2)
PRINT¥,7H JAINI=,RI?
CALL LJOF(RJ2) A
END o
SUBROUTINE 0O
—C  CALSULATE D MATIIX FROW O AND R
DIMENSIIN R(2),Q4242)yHi(2,2)
COMMON/VAR/LITAL TIMZ EE, 1P i T, OE Ly NITNZ
COMMON/ZMAT/F2(1124) yA(2)43AA(2),8(102442)40(2)4F3({4096)
COMMONZH B T 7Y, WO THT
NCIM=IPSNDIML=I"+1
00 {3 I=1,1F
R(I)=y,
po 10 J=Lvie
19 Q(Iq4d)=J,
DO™I5 KENITHZ
SN=F3(K) ~F3(K+N)
DO 3T 11,12
D0 25 J=1,IP
T2 QUL EYTLITEAKG DYFRIRY DN
30 RUID)=R(I)+3(K,I) *SN
T35 CONTINUY
CALL GMINV{IP,I>,QyHWi4MR,y9)
TTTTTTTTIELEIRRLP

OO0

@18 PAGE 1S BEST QUALTRY PRAGTISEKIA
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Do 53 1I=1,1IP
i11=1
D(I)=3.,

Ul 45 J=1ly1Ply L7
DII)=0(I) +X1(J)*R(II)

45 TIZTT+I 7
50 D(I)==0(1)
ERD ]
SUSROUTINE LOOP(RJ2)
c ITERATION PROCESS
¢ COMPUTE A(I+1)=a(1)+D(I)
[ DETERMINE WHZN A (I+1) IS ACCEPTAGLE

DIMENSION dd9(2)

COMMON/VAR/LINL, LIM2,EE,IPyHyNyDEL,N1,N2
COMMON/MAT/F2(1524) ,A(2)4AA(2),B(102442),0(2)

NCT=MCT=0.
CALL 0D

00 140 1=1,1I°
0(I)=D(%1}¥IEL

A(I)=AA(I)+D(I)
IF{A(I)cLT404e0ReA(2)eGT«04)G0 TO 15

CALL COzF (AyRJ1)
1F{RJ1.,LT.342)G60 70 30

DEL=DEL/2
NCT=NCT+1

IF(NCT.LE.LIMIIGO TO 2

PRINT*,/HERROR L y3H A=4A,5H NCT=4NCTs5H MCT=,MCT,RJL,RI2

3u

KETURN
D0 35 I=1,IP

DDD(T)=ABSAD(T)Z7AA(CI))
1F(DOD(I) +GTLEE)GO TO 23

20

GO TO &)
MCT=MCT+1

TF(MET.LESLIH2) 30 T0 9

PRINT*,7HERROR 243H A=4A45H NCT=yNCT,5H MCT=4MCT,RJL,4RJI2

KETUXN
RJ2=RJ1

NCT=d
CEL=1.

00 25 I=1,IP
AA(T)=A(I)

GO 70 1
PRINTuSy (A(I),I=14IP)4NCT,MCT

PRINT*,3HAA=, AA
PRINT*,3H 9=,0

PRINT*,5HJMIN=,RJ1
FCRMAT{LX43G12.542X,215)

END
SU3BROUTINE COEF(H,RJ)

COMPUTE MEAN TRACKING ERROR FOR GIVEN PARAMETERS -
EXPRESS PAITIAL DERIVATIVES OF MEAN TKACKING ERRGR WRT

oHloo

KGAIN ANJ GAM4AL IN MATRIX 8
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DIMENSIIN W(2),IWK(12)
UOMMON/VAR/LIMLI, LIH24EE,IPyHyNyDELyNL1 N2
COMMON/YAT/F2(1)24) yA(2) yAA(2),B(1024,2)40(2),F3(4096)
UzH (1}
V=W {2)
X=U+V
REWIND 1
00 16 I=144
WRITE(1) F3(I+N)
1=(1~1)*H
BI)=F2(I)
S1=52=179,
IF(U*T GEW2994)51 =1,
ITF VA LE, <2304 52=0.
IF(Si.\IE.G.)31=EX°(-U'T)
IF(Se N E . 0. 132=EX0(V*T)

10 F3(I)=((X¥T+4,)%S514=52)/(X*X)
CALL VCINVI(F3,9yNy Ny IWK)
00 13 I=1N
FFEF3TITYH

c H=TIMF STEP .N4

T T INPUTTTRRJZCIORY INFORMATION AND EMPIRITAL OATA
WRITE(L)FF
B(I)=F2(1)

T=(I-1)*H

SIES2ELTG,

IF(U#TWGE.230.,)31=0.,

TFIV¥T LE =200, 85220,

IF(SioNEo Go)Si-’EXP('U*T)

TFISZoNE 015252 XP (V¥T) ”
ig FI(I)=((X¥T=1,)*82+4S1)/(X*X)

CALL VCIRVITF S, 13y Ny IFK)

DO 20 I=1,N

T T FESTI(ITYH
WRITE(L) FF
BV =Fe (D)

T=(I=1)*H
ST=S2513T,
IF(U*T,GEL292,)51=0,

T IR UVAT LRSS 2T0W Y § AT,
IF(S1eNZE 4 04)SL=ZXP (=U*T)
IF(S2VHEL B, 132=XP (V¥

20 F3(I)=(32-51) /X ,
CACCTVCORVITF T, 3, Ny Ny IWK) N
REWIND
KJ=T,
00 60 I=1,N
REXODTDIFSTI#NY
60 CONTINUE
U0 73 IENTIRZ
F3(I)=F3(I)*H
T RISRIFFI(I+NT =2 3(IV)%%2
00 65 I=1,2
D0 85 J=T144
65 READ(1)3(Jy 1) ‘
END * T

TMIPPACK 1S BIST QUALIFY Phiuidrisne
PRON GRPY PebBLLHED 16 D0




B. Flow Chart of Parameter Identification for Parameters Associated with
Standard Deviation of Tracking Error Equations.

READ: INITIAL COMPUTATIONS:
- EMPIRICAL DATA- VARIANCE -OBSERVER MODEL. PREDICTION OF
OF TRACKING ERROR: Sy (1) VARIANCE OF TRACKING ERROR: S, (t)
- TRAJECTORY ESTIMATES: ~PARTIAL DERIVATIVES OF S, (1) WRT
8,04 —  PARAMETER VECTOR bo
-IDENTIFIED PARAMETERS -VALUE OF COST FUNCTION
o=[Kd N
0 = [k ¥y] J=2 [si() =52t
- INITIAL PARAMETER GUESS: i1
bo= [a1 102 sa3]

CALCULATE

D

UPDATE PARAMETER VECTOR:
bi4y = by +pBDy

'

UPDATE:
V2
Jity
\
YES NO
€ g1 <Yy —
T J
B CHECK: \[NO STOP
peplt p<LIMI ERROR 1
IYE%{_){W' <e NO
h \I by (k)
WRITE: UPDATE *
D |41 jp=l | L YES /7 CHECK: NO STOP
: —¥{_ ERROR 2
JEH Ji = Ji+t i<LImz

b= b
= 1+1

ST0P

o zd Su%
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Comments:

5.

Execution of Program Fit 1.

Compile Program

Input: Tape 1l contains

a. Azimuth and elevation trajectory information

b.  Empirical standard deviation of tracking error

Load Library Routines:

&. VCONVO - convolution integral computation from International
Mathematical & Statistical Library (IMSL).

b. GMINV - matrix inverse routine from D. L. Kleinman Library
[12].

Execute

Output: Parameter values for [al, az, as].
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Ne o e sty e A o o ¢ e~

—— - PROGRAM_FITHINPUT,,OUTBUT TAREL)

C INPUT MEAN TRACKING ERROR PARAMETERS

oo -PRINTX o SUH T.YRE _IN GAMMAL _SKGAIN
READ¥y ALy A2

CALL CONVO(AL,A2)
1 PRINIX,5CHIYPE 1. .70 GO OR TYPE 0.T0 STCP
READ*, IFG
e L E S LEG 0 £Q.00.).STOP
CALL INIT
20 10 4 —
END
o~ SUBROUTINE_ _INIT
c INITIALIZATION ROUTINE
G READ IN DAY A JO BE LT D e e
C MAKE INITIAL GUESS
LOMMON/ZVAR/ZLIML, ) LIM2 4 EEoHa Ny DELWNLHN2
" COUMON/MAT/ZA(3) s AA(3)iB(102494) 4D(3) 4F2(L024)
Ie=3_
PRINT*,3CH TYPE IN LIML,LIM2,EE
e READX, LIM1, LIM2,EE
PRINT* 9 3H N=yNoSHLIMI=y LIML 9 SHLINZ=9LIN2yIHEE=¢EEy3HIP=y IP
PRINT® «S0H TYRE _IN INIYTIAL _GUESS==ALRHAL ALPHAZ yALRPHAS e
READ*, AA
e PRINT X g 40 H. L. ST _GUESS.L AL
DEL=1
et GALLL.COEFLAA L RI2)
PRINT¥*,10H JMIN(1)= 4RJ2
e GALL LLOORLRIZ2H IR) —_

END
e S UBROUITINE _DDAIRY s
c CALGULATE O MATRIX FROM Q AND R

e L LHENS TON. R £3.).9.24 7930001 (3,.3.)
COMMON/VAR/ LIML,LIM2 yEE sHyNDEL I NLyN2
e SOMMON ZHAT LA (30 AAL3 )0 BA1024 44100 (3),E2(1024)
COMMON/MAINL/NDIM,NDIMY
NDIM=IRINDIMI=IR+]
DO 4C I=L,IP
R{I)=D.
Do 18 J=1,1IP
i0 R{Isd)=0a
DO 35 K=NiyN2
e INZBAK 5 4 ) =E 2 {K) -
DC 30 I=1,IP

0. 25 _d21,1P .
25 Q(Ied)=QUIJ)+B(K,I)*¥B(K,yJ)
Sh . R{IN=RSXL+B (K, I)*SN

35 CONTINUE

e GALL _GMINVAIC IR s Qs Wiy MRe D).
IPL=1P*IP
Do._S4 I=1,1IP

II=3

IﬂISPAElZSBﬁSIQUALIFI?KA

sidusls
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DEX)=0a

DO 45 J=1,IP1,1P
— (T =04T) i (J)*¥RETTD
45 II=11I¢1
R3] D(I)==D(1)

END
o __SUBROUTINE_ LOOP(RJZs1IP)
c ITERATION PROCESS
G _COMPUTE A(I+1)=A(I)+DLI)
c DETERMINE WHEN A(I+1) IS ACCEPTABLE

DIMENSION 00D(3)

COMMON/VAR/ZLIML ) LIM24EE HyNsDELINLyN2
COMMONZMAT/ZAS3) s AAL3) 2 B(1025+4),D(3),F2€1024)

NCT=MCT=0.
L _CALL . DD(IP)
2 DO 400 I=4,IP

RLI1)200I).X0EL
100 A(I)=AA(I)+0(I)
e TEACL) LT 000 0RALR) 0l T e s s QRAALI) o 1LT204)60 TO 7
CALL COEF(A,RJL)
6 IF(RJLLILRI2)60_TO 30
7 DEL=DEL/2
NCI=NCT+1
IF(NCToLE,LIML)IGO TO 2
PRINI* 9 7THERROR 4 93H A= 3854 NCT=sNCT 35H MCT=4MCTRJILIRI2 ) ‘%
RETURN
30 DO 35 I=1,1P
DODUI) =ABS(D(I)/AA(I))
35 JTFE(ODOCT) o0 oEc)GQ . T0O 20
50 TO 40
28 MET=MOT &L
IF(MCTWLESLIM.)GO TO 9
_~“ﬂ_m§§{gtttzﬁE&&Q&wa4§ﬂ_AalA,an,ncxsiungﬁu_nQLz,n&lxaixxaia_um__mm_w“"
; RN
9 RJ2=R4L
NCT=b
o DEL=1a
DO 25 I=1,IP
22 . AA(I)=ALT)
60 TO &
40 PRINT®s4H.__AssAsbHNCT= o NCTs 4HMCT= s MCT
PRINT* 43HAA=,AA
e PRINT® 4 31 02,0
PRINT* ¢ SHJMIN=,RJ1
END
SUBROUTINE COEF (W,SUM)
G . COMPUTE. TRACKING ERROR_ VARIANCE FQUATION . }~
¢ EVALUATE COST FUNCTION :
- DIMENSION H(3) . .
COMMON/VAR/LIML 4 LIM2 yEEoHyNyOELyN14N2 5
o COMMON/MAT/ZALI) s AAL3)+8(1026:4)90(3)F2(L024)

. e e
A %

o

g

»@‘Mw"\
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e o e g = St YR S ik s SVt £ o2 e

SEUPON

D SN [ GEN T A T T i P

Sun=0,
RO 30_T=NIy N2
BUIsh)=B(IgL)¥W(L)+BLY42)%Ad(2) +B(T43)*¥U(3)
e SUM=SUM(B(T 242 =~F2(T))%*2 . .
10 CONTINUE ‘
END - : : . - '
SUBROUTINE CONVO(A1,A2)
c LOMPUTE _PARTIAL_DERIVATIVES QOF VARIANCE OF TRACKING ERROK_WRT ALPHAL:2,!
c DERIVATIVES ARE CONSTANT SINCE GAMMAL AND KGAIN ARE KNOWN
G JNPUT_ TRAJECTORY. INFORMATION_AND_EMPIRICAL_DATA -
DIMENSION IWK(12),F3{(2048)
- COMMON/VAR/LIMA S LIM2EEsHeNsOELINLyNZ
COMMON/MAT/ZA(I) yAAL3) 4B(102444) 4D(3)4F2(1024)
DATA NaHs NioN2/3G200 0849300240204/
D045 I=1,N
READ(L2*)F3(Y) o F2(L) 42424
T=(I-1)*H \
BII)=((AL1*EXP(AL*T)+A2*EXP(=A2*T))/(AL4+A2)) ¥»2
15 CONTINUE
CALL VCONVO(B,F3 4Ny NyTIHK) .
DO 35 I=1,N
. F3(I=F2(I)
35 READ(L 9*)F2(I)4Z

BB=B(I)*H
WRITE(L) BB ﬂ
I1=(1=1)*H4 —

20 B(I)=((AI’EXP(AI*T)+A2‘EXP('A2*T))/(Ai‘AZ))‘*Z

— e CALL._VCONVO (B ¢.E3.9Ns Ny INK)

00 25 I=1,N

Ts(I~1)¥H

BB=8(1)*H

HRITE(1) 88

F3(I)=4,

25 BlI)s((AL*YEXRLALXT)AAZXEXR(=ARXTLIL(ALEA2)) 242
CALL VCONVO({BsF3oNyNyINK:

e R EHIND, L
00 30 I=1i,N
F2(I)=F2(1)*¥F2(1) .

30 B(X)=B(I)*H

. DO 40 =243 ;
DO 48 I=1,N

A0 . READ(11B(T,.d)
END .

e T P PN S ot v s bt
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m
x
-
=z
o
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APPENDIX D

Flow Chart and Program Listing of Computer Simulation of AAA Tracking Task

‘ START ,

| ]
DO 1001 =1,2

I={1= AZIMUTH
2= ELEVATION

INPUT: TRAJECTORY
INFORMATION

PARAMETER VALUES

\

-SET UP MATRIX A 8 COMPUTE
STATE TRANSITION MATRIX:
(I) = eAlh
-INITIALIZE STATE VECTOR: Zo

YES

COMPUTE COVARIANCE OF
RANDOM REMNANT TERM: Vn

i

UPDATE MEAN SYSTEM EQUATION:
Znn=®Zy +1] 6y

Y

CALCULATE COVARIANCE MATRIX:
N T T
X4 20X P + 1515 v,

WRITE:

MEAN TRACKING ERROR
Zn (1) STANDARD DEVIATION
OF TRACKING ERROR

VXy (0
-
T=T+h
\ TS T
NO
100 M
i
. - PR Ll
e
( stop ) S 3.
‘g,:w:’,& g}\;’ v
71 *u?yya
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Comments:

Execution of Program OBS.

Compile Program

Input: Tape 2 contains

a. Azimuth and elevation trajectory information

Load Library Routine:

a. DSCRT - computation of transition matrix from D. L. Kleinman
Library [12].

Execute

Output: Time, mean tracking error, standard deviation for azimuth

and elevation.
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PROGRAM 0BS(INPUT,QUTRUT,TAPEZ)

DIMENSION A(393)9Z(3)4X(393)9R1(I)IsHI(343)4HW2(3,3),4P(7,2)

COMMONZMAINL/ZNN2 .

{DATA p/‘ZoBlo‘io9209“150,0““96900“2‘9;103,‘30Q19;1~’3002'0090393:
——d 00008740259/ 90EL  Na TEND/ 0049394547

c REDUCED ORDER MODEL SIMULATION FOR S60 SYSTEM
- P, 121 =GAMMAL __ P(2,1C)=CAMMAZ__ P(3,1C)=KGAIN -
c P(5,IC)=ALPHAL P(64IC)=ALPHA2 P(74IC)=ALPHA3

L MOOEL _USES N=3 STATES.AND DEL=l& TIWE STEP
N1=N¥*N § N2=N+1

— kAL P L2322
PRINT*,5{(H TYPE {1 FOR AZ 2 FOR EL 3 FOR BOTH

e JEAD Y5 TEG
IF(IFG.EQe1) L2=1

e e R EALEG 0 EQ 0 21422
po 588 IC=L1,L2
REWIND 2
(1) =~-1,
72$2)=2(3)=P (3,1Q)
DO 10 J=14NL

A AGIEX(IL=0,
A(L)=P(1,IC)
A(T)=4e___
A(2)==P(1,IC)I*P(3,IC)

e D812 AL D) 2P (3, IC)

-

H COMPUTE TRANSITION MATRIX = Wi
CALL OSCRISNsAsDEL NI W2210)
H GALCULATE CONSTANT MATRICES
s DO_50 _I=44N
I1I=4
RitIl=1D.

DO 45 J=I4NiyN
RALI)I=RI(T) $W2 {1)*Z0IX)
45 II=1I+4
.52 GONTINUE
po 60Y1=11N
7400=0
DO 60 J=1,N
68 A(I,J)=RL(II*RI(J)
00 20 I=1,N
Ji=I4N
[2=I1+N
20 RA(II=W2(TI1)+¢W2(X2)

T=0. v j’

v s

¢

1 READ(293)C19C29P (ky1)9C39C4 P (L4y2) G

3 FORMAT (6G12,4) 7
P4=Z(2)=Z(3) +P (3,101 *Z(1) - &
P5={P4=PP4) /DEL ‘ T
V=(P(54ICI¥P(641C) #PL¥P4+P (T, IC) *P5*P5) /DEL N
PPLz=PL R

73 IV:}’




DO 25 I1=1,N
I1=1

W2(I)=3.
00 15 J=I,Nig4N

W2(I)=H2(I) ¢WL () *Z(ID)
15 II=1I+1

25 CONTINUE
c UPDATE_ MEAN ERROR EQUATION

DO 35 I=4,N
Z(I)=W2(I)+RI(I)*P(4,4IC)

35 CONTINUE

c UPDATE ERROR COVARIANCE EQUATION
CALL MULT (WL XyNyNLy WD)
00 48 I=14,N1

40 X{IV=A(I)*V+W2(I)
—_— SD=SORTUX (1,4 1))

c OUTPUT MEAN ERROR TRACKING ERROR=Z{(1), AND STANDARD DEVIATION -

el _TRACKING FRROR=SQUARE.ROQT QE X[(4,4)

T=T+DEL
LK= (T+.004) ZDFL

IF(MOD(LK25) ¢EQeU)PRINT754T4Z(1),SOD

—I5____ FORMAT(5X43612.4)
IF(T«GESTEND)GO TO 500
20 10 1
560 CONTINUE
END

SUBROUTINE MULT(E FeloL1,yH)
—DIMENSION E(L1) 4 FeL1) oG HILL)

c MATRIX MANIPULATION H=EFE "’
DO .18 =141

II=4
DO_10. _Kz1,L

TEMP=D
J— Lo N T -3 R Y

TEMP=TENP+E(J)*F(II)
5 II=I1¢4

KK=(K=2)*L+I
—10 _ G(KK)=TEMP

00 20 I=1i,L
00 20 XKzX,L

TEMP=0»
I1=K

DO 15 J=I,Ll4,L
JEMP=TEMPAG LI *E(IT)

15 II=II+L
e KKE (K2 L) 2L # T

20 H(KK)=TEMP
L2=L=1

DO 30 I=1,L2
- L3sT+d

DO 30 J=L3,yL
K12 (1= 1) ¥ L 4

K2=(J=1)%L+]
-3 4(K1)=HIK2)

END
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